Sunday, November 3, 2019

FBI - White collar crimes Essay Example | Topics and Well Written Essays - 500 words

FBI - White collar crimes - Essay Example The main role of the FBI is investigation of criminal activities that are assigned to it. This incorporates intelligence and law enforcement initiatives from the agency. Another role of the FBI is collaboration with other law enforcement agencies in investigative measures in which it helps with evidence examinations, and in empowering members of the other agencies through trainings. In facilitating its investigative role and collaborative role with other agencies, the FBI collects intelligence information, analyses the data and shares it with relevant authorities (The Federal Bureau of Investigations 1). As a special agency, however, the role of the FBI under domestic jurisdiction is limited to â€Å"white-collar crimes, kidnapping, extortion, interstate transportation of stolen property, and bank robbery† among others (Gaines and Miller 156). White-collar crimes are crimes that professionals commit in their course of duty with intent of obtaining material benefits of concealing some information with the aim of avoiding a consequence. Elements such as â€Å"deceit, concealment,† breach of trust characterize it (Ferguson 16). White-collar crimes are also free from use of violence or threat of violence and often aim at receipt of money of commodities of avoiding material liabilities (Ferguson 16). The FBI investigates these crimes to ensure evidence towards justice and its special intelligence is essential to the type of crimes that intellectuals commit through well-crafted schemes that sometimes incorporate intelligence and use of technology to cover up the criminal activities. The Enron case is an example of white-collar crimes that the FBI has investigated. The case involved a series of fraudulent misrepresentation by the firm on its financial position and collaboration with the organization’s accounting fi rm for concealment of the misrepresentations and for further misrepresentations. This led to losses among investors as officials of the company

Friday, November 1, 2019

Finite Element Analysis of structures Essay Example | Topics and Well Written Essays - 1750 words

Finite Element Analysis of structures - Essay Example Each element contains nodes which are points were the elements are mathematically connected to one another. The idea of dividing a domain up into subdomains is the basic principle of how FEA works' FEA consists of a computer model of a material or design that is stressed and analyzed for specific results. It is used in new product design, and existing product refinement. A company is able to verify a proposed design will be able to perform to the client's specifications prior to manufacturing or construction. Modifying an existing product or structure is utilized to qualify the product or structure for a new service condition. In case of structural failure, FEA may be used to help determine the design modifications to meet the new condition. There are generally two types of analysis that are used in industry: 2-D modeling, and 3-D modeling. While 2-D modeling conserves simplicity and allows the analysis to be run on a relatively normal computer, it tends to yield less accurate results. 3-D modeling, however, produces more accurate results while sacrificing the ability to run on all but the fastest computers effectively. Within each of these modeling schemes, the programmer can insert numerous algorithms (functions) which may make the system behave linearly or non-linearly. Linear systems are far less complex and generally do not take into account plastic deformation. Non-linear systems do account for plastic deformation, and many also are capable of testing a material all the way to fracture. How Does Finite Element Analysis Work' FEA uses a complex system of points called nodes which make a grid called a mesh . This mesh is programmed to contain the material and structural properties which define how the structure will react to certain loading conditions. Nodes are assigned at a certain density throughout the material depending on the anticipated stress levels of a particular area. Regions which will receive large amounts of stress usually have a higher node density than those which experience little or no stress. Points of interest may consist of: fracture point of previously tested material, fillets, corners, complex detail, and high stress areas. The mesh acts like a spider web in that from each node, there extends a mesh element to each of the adjacent nodes. This web of vectors is what carries the material properties to the object, creating many elements. A wide range of objective functions (variables within the system) are available for minimization or maximization: Mass, volume, temperature Strain energy, stress strain Force, displacement, velocity, acceleration Synthetic (User defined) There are multiple loading conditions which may be applied to a system. Next to Figure 3, some examples are shown: Point, pressure (Figure 3), thermal, gravity, and centrifugal static loads Thermal loads from solution of heat transfer analysis Enforced displacements Heat flux and convection Point, pressure and gravity dynamic loads Each FEA program may come with an element library, or one is constructed over time. Some sample elements are: Rod elements Beam elements Plate/Shell/Composite elements Shear panel Solid elements Spring elements Mass elements Rigid elements Viscous damping elements Many FEA programs also are equipped with the capability to use multiple materials within the structure such as: Isotropic, identical throughout Orthotropic, identical at 90 degrees General anisotropic, different throughout Types of